

Institute of Physics of the Czech Academy of Sciences

Optical spectroscopy and biosensors for investigation of biomolecules and their interactions

Jakub Dostalek

AIT - Austrian Institute of Technology GmbH Biosensor Technologies Unit Konrad-Lorenz-Strasse 24 | 3430 Tulln | Austria T +43(0) 664 2351773 **FZU – Institute of Physics of the Czech Academy of Sciences**, Na Slovance 1 | Prague 182 00 | Czech Republic T+420 776767927

jakub.dostalek@ait.ac.at | http://www.ait.ac.at | http://www.jakubdostalek.cz

Fluorescence Spectroscopy I

Content

- Jablonski diagram, fluorophore key characteristics
- Angular distribution of emission
- Conjugation of fluorophores with biomolecules
- Fluorescence energy transfer (FRET)
- Optical configuration used for the excitation and collection of fluorescence light in bioassays
- Fluorescence correlation spectroscopy
- Fluorescence anisotropy

Parameter that describes interaction of light with matter composed of elements (e.g. atoms) that are $\langle \lambda \rangle$ and exhibit polarizability. By averaging over many atoms that are be polarized by the oscillating electric field.

For more details, see Lorenz Lorenz or Clausius-Mossotti theories.

Absorption of Molecules

Absorption of light by molecules is accompanied with their transition from a ground state to excited state (followed by a relaxation). It typically occurs at distinct energies leading to specific bands in absorption spectrum.

E.g. is routinely used for measuring total concentration of proteins – UV absorption spectroscopy.

Absorption of Molecules -Wavelength Spectrum

<u>Electronic lines</u> correspond to a change in the electronic state of an atom or molecule. Typically UV-Vis.

<u>Vibrational lines</u> correspond to changes in the vibrational state of the molecule and are typically found in the infrared region.

<u>Rotational lines</u>, for instance, occur when the rotational state of a molecule is changed. Rotational lines are typically found in the microwave spectral region.

Combination of above can lead to rather complex spectra.

Jablonski Diagram

- (1) Photo-excitation: from the ground electronic state S_0 creates excited states S_1 , $(S_2, ..., S_n)$
- (2) Internal conversion: Molecules rapidly (10⁻¹⁴ to 10⁻¹¹ s) relax to the lowest vibrational level of S₁.
- (3) **Returning** to its ground state $S_{0.}$

As the energy hv_{ex} is higher than that emitted $hv_{em} - Stokes shift occurs$.

Fluorescence

Process in which a fluorophore (e.g. a dye molecules, quantum dot) absorbs a photon and re-emits it at a higher wavelength. Form of luminescence:

-uminescence

Fluorescence: Lifetime from <10⁻¹⁰ to 10⁻⁷ s (from singlet state).

Phosphorescence: Lifetime from 10^{-5} to $>10^{+3}$ s from (triplet excited state).

Photon spin 1

Fluorescence Emission Spectra

Abs. and Emission spectrum of Cy5 dye

http://www.olympusmicro.com

Fluorophore Quantum Yield

Quantum yield / quantum efficiency: Ratio of number of emitted vs. absorbed photons, Φ/QE.

QE is between 0 (non-fluorescent molecule) and 1 (perfectly emitting molecule). QE is limited by the competing transitions to the ground state that are not radiative.

Table 1 Common	fluorescent dyes; their ass	ociated wavelengths of a	absorption (excitation	on) and emission, and co	lours	
Name	λ _{max} / nm (absorption)	λ _{max} / nm (emission)	Colour	E at λ_{max}	Φ	т/ns
Cyanine-3	550	570	Dark pink	136 000	0.15	
Cyanine-3.5	591	604		116 000	0.15	< 0.3
Cyanine-3b	558	572		130 000	0.67	2.8
Cyanine-5	649	670	Blue	250 000	0.3	-
Cyanine-5.5	675	695	Blue	209,000	0.3	-

https://www.atdbio.com/content/32/Cyanine-dyes

Absorption and Emission Dipoles

Molar extinction coefficient: Describes the strength of the absorption $[\varepsilon_{max}]=M^{-1}cm^{-1}$.

Absorption and emission of electromagnetic field can be treated by using respective **dipoles** (giving rise to angular dependence of the effects).

https://www.olympus-lifescience.com/en/microscoperesource/primer/techniques/fluorescence/fluorescenceintro/ https://www.olympus-lifescience.com/de/microscoperesource/primer/techniques/fluorescence/tirf/tirfintro/

Quenching

Quenching: Loss of fluorescence signal, interactions between the fluorophore and the local molecular environment (collisions), including other fluorophores (e.g., fluorescence resonant energy transfer FRET, non-radiative channels in proximity to metal...).

Metal

Khulan Sergelen, Stefan Fossati, Aysegül Turupcu, Chris Oostenbrink, Bo Liedberg, Wolfgang Knoll, and Jakub Dostálek, Plasmon field-enhanced fluorescence energy transfer for hairpin aptamer assay readout, ACS Sensors, 2017, 2 (7), 916-923.

<u>FRET</u> – metallic NP serves as a donor and quenches the fluorescence

<u>Spherical DNA</u> – allows for simple cellular uptake

<u>Aptamer</u> – oligonucleotide designed for specific capture of molecular analytes (ATP in this case)

Photo-bleaching

Photo-bleaching: Only certain number of absorption / emission is possible before destruction of the excited fluorophores occurs.

Organic Dyes

A large variety of synthetic organic fluorophores are available. Typically charged in order to promote solubility.

Quantum Dots

Nanometer-sized semiconductor particles that exhibit narrow tunable emission bands and capped with biocompatible coatings.

- Cannot be bleached as organic dyes.
- Effect of photo-blinking may complicate their use.
- Become established materials in a broad field of applications including labeling biomolecules

https://www.sigmaaldrich.com/technicaldocuments/articles/materialsscience/nanomaterials/quantum-dots.html

Conjugation with Biomolecules

- Often amine coupling is used and there are many commercial kits available.
- The number of fluorophore attached per e.g. IgG molecule is adjusted (3-5) to balance between decreased IgG activity, selfquenching.

Smart Wound Dressing

Biosensors embedded in wound dressings to monitor bacterial infections. Possible incorporation of triggered release of a drug.

Toby Jenkins laboratory - 10.1021/acsami.5b07372

Fluorescent dye loaded to lipid vesicle, toxic bacteria destroy the lipid bilayer wall and leaches the dye reporter.

Fluorescence Resonant Energy Transfer - FRET

Förster / fluorescence resonant energy transfer: dipole-dipole coupling of two fluorophores which changes the emission spectrum. Efficient at small distances, typically r < 10 nm.

Spectral overlap of absoprtion and emission bands of donor and acceptor chromophores <u>Applications:</u> conformation changes studies, immunoassays, DNA hybridization.

Example – Probes for Real Time PCR

- Probes are loaded to a droplet together with sample and PCR reagents
- Without the analyte they are dark and when the target analyte is present, are turned to bright.
- Based on fluorescence and FRET or quenching.

Fluorescence Detection

Most common configuration are: confocal fluorescence (left), total internal reflection - TIRF (middle) and epi-fluorescence (right).

Total Internal Reflection Fluorescence (TIRF)

The excitation via evanescent field of totally internally reflected wave allows for the observation of fluorescence signal from close proximity (<1 μ m) to the surface and decreasing background.

http://lightmicroscopy.ucdenver.edu

Mattheyses A L et al. J Cell Sci 2010;123:3621-3628

Fluorescence Immunoassays

 Schematics of a typical implementation of a fluorescence sandwich assay (left) and a respective reader (right).

Fluorescence Scanners

https://www.olympus-lifescience.com/fr/microscoperesource/primer/techniques/confocal/confocalscanningsystems/

https://doi.org/10.3390/s130505561

A) Scanning the probing beam across the specimen.

B) Scanning the substrate and keeping the optics fixed.

Photomultiplier

- Detector designed for the measurement of low intensity of light.
- Allows for counting of individual photons (e.g. counts per second cps, fluorescence rate in Hz)

Charged Coupled Device - CCD

- Allows for acquisition of the whole ۲ image without scanning the beam or the sample.
- Sensitivity can reach single photon counting for each pixel.
- Recently, there are available (comparable) electron multiplying charge-coupled device (EMCCD) or complementary metal oxide semiconductor (CMOS)

Fluorescence Filters

- Sensitive fluorescence measurement relies heavily on optical filters to spectrally filter the excitation and emission light:
- Laser band pass filter transmission of only λ_{ex}
- Emission band pass filter transmission of only $\lambda_{\rm em}$
- Notch filter used to stop λ_{ex}
- Dichroic mirror high reflectivity for λ ex and high transmission for $\lambda_{\rm em}$ at tilted angle.

Fluorescence Filters (Cy5)

Laser band pass filter

Emission band pass filter

- Filters needs to be selected with respect the used fluorophore and the excitation wavelength.
- Due to the fact that are based on interference, they are sensitive to angle of incidence.
- The suppression of transmission is quantified by optical density (3-7 orders of magnitude):

$$OD = \log_{10}\left(\frac{1}{T}\right)$$
, or $T = 10^{-OD}$

Fluorescence Correlation Spectroscopy

https://doi.org/10.1007/978-3-642-16712-6_560

- Allows for the measurements of molecules diffusing in and out of the focal volume of the excitation beam.
- The autocorrelation function enables determining of diffusion coefficient, hydrodynamic radius, reaction rates....

Fluorescence Anisotropy

https://www.horiba.com/

• Rotational correlation time: ϕ_r

 $\phi_r = rac{\eta_r}{k_B T}$

(viscosity (η), temperature (T), Boltzmann constant (k_B) and volume (V) of the nanoparticle)

Tumbling rate (for spherical object)

$$r(t)=r_0 \exp{\left(-rac{t}{\phi_r}
ight)}$$

Fluorescence anisotropy can be used to measure the binding constants and kinetics of reactions that cause a change in the rotational time of the molecules.